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Motion Planning in C++

MoveIt! provides a high-level C++ API:
moveit_cpp
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#include <moveit/moveit_cpp/moveit_cpp.h>

...

moveit_cpp::MoveItCpp::Ptr moveItCpp = make_shared(node);

moveit_cpp::PlanningComponent::Ptr planner = make_shared(“arm", moveItCpp);

planner->setGoal(“home”);

planner->plan();

planner->execute();

5 lines = collision-aware path planning & execution

Amazing!



Reminder: MoveIt! Complexity
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Sensor Input

http://moveit.ros.org/wiki/High-level_Overview_Diagram
http://moveit.ros.org/wiki/Pipeline_Overview_Diagram

Main difference 
between MoveGroup 
and MoveItCpp is the 
layer of abstraction

http://moveit.ros.org/wiki/High-level_Overview_Diagram
http://moveit.ros.org/wiki/Pipeline_Overview_Diagram


Motion Planning in C++

Pre-defined position:
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planner.setGoal(“home”);

Joint position:
robot_state::RobotState joints.setStateValues(names, positions);

planner.setGoal(joints);

Cartesian position:
Affine3d pose = {x, y, z, r, p, y};

planner.setGoal(pose);



Exercise 4.0
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Exercise 4.0:
Motion Planning using C++

fake_ar_pub

vision_node

myworkcell_moveit_cfg

ur5_driver

descartes_node

myworkcell_support

myworkcell_node

Param: base_frame



Intro to Planners

• Types of Motion Plans

• Basic Toolpath Plan

• Planning Workflows

• Common Motion Planners

–OMPL

–Descartes

–TrajOpt

• Motion Planning Frameworks

• Simple Planning Pipelines

• Advanced Planning Pipelines
8



Types of Motion Plans
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Freespace Process Combined

Motion plans between far-
spaced start and end 
points

Motion plans optimize 
robot pose between 
under-constrained 
waypoints

Motion plans that can be 
segmented into portions 
that are freespace motions 
and others that are process 
motions

Example: Moving from a 
generic, off-the-surface 
"start pose" to the upper 
righthand corner of a 
surface for painting

Example: A continuous line 
mapped around the edge 
of a piece to be welded

Example: Moving from a 
generic, off-the-surface 
"start pose" to the edge of 
a jig-held part and then 
welding the edge at a 
known EE angle



Toolpath Plan Example
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PART

Raster - A series of 
specified Cartesian 
waypoints to be 
executed without 
breaking*
Transition - A 
freespace move 
between rasters

Entry/Exit - A freespace 
move from/to a position 
away from the part

Definitions

*depends on 
application



Common Motion Planners
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Motion Planner Application Space Notes

OMPL Free-space Planning Stochastic sampling; Easy and convenient 
interface

TrajOpt Trajectory Optimization Optimize existing trajectory on constraints 
(distance from collision, joint limits, etc.)

Descartes Cartesian path planning Globally optimum; sampling-based search; 
Captures “tolerances”

Simple Planner Free-space Planning Naive simple linear interpolation between 
waypoints

STOMP Free-space Planning Optimization-based; Emphasizes smooth 
paths

CHOMP Trajectory Optimization Gradient-based trajectory optimization for 
collision avoidance and cost-reduction



OMPL

Open Motion Planning Library:
Randomly Sample Valid Joint States then 

Solve for Sequence
Planners we often use:
• RRT

– Build a tree along different potential joint 
configurations to arrive at the final pose

• RRT-Connect 
– Build a tree from each side and try to connect 

them
– Parameters

• Range (same as above)

• See more at 
https://ompl.kavrakilab.org/planners.htm
l

Starting Joint 
Configuration

Final Joint 
Configuration

Unideal Sample 
Joint Configuration
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https://ompl.kavrakilab.org/planners.html
https://ompl.kavrakilab.org/planners.html


Descartes

Sample ‘all’ Possible Solutions then Graph Search for 
Best Trajectory

13



TrajOpt

Optimize Seed Trajectory based on Weighted 
Cost Functions (distance from collision, joint 
limits, etc.)

• All parameters have a coefficient that can 
be increased/decreased to change its 
influence

• Example costs:
– Proximity to a singularity

– Velocity/Acceleration/Jerk smoothing

– Avoid collisions

• Weighed sums of all collision terms

• Safety margin-based cost

– Encourage/discourage DOF usage 

• Cartesian: rotation about z encouraged & 
unconstrained

• Joint: usage of the wrist discouraged with a high 
cost

• Constraints are simply infinite costs
– The absolute limit of the safety margin would 

be set and anything in collision with it would 
cause the planner to fail
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Motion Planning Environments
Interfaces used to generate motion plans can be:

• Open Source or License-based

• UI or script based

• Leverage a variety of planners

• Contain additional hooks to simulation packages

These differ from raw planners with:

• ROS API

• Collision environment management

• Visualization packages

• Planning pipeline/Task Constructor capabilities
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MoveIt!/MoveIt!2 Tesseract

Easy to use interface, wizard features, broad toolset Enables very complex planning, different toolset



INTRODUCTION TO PERCEPTION
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Outline

• Camera Calibration

• 3D Data Introduction

• Explanation of the Perception Tools 
Available in ROS

• Intro to PCL tools
– Exercise 4.1
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Objectives

• Understanding of the calibration capabilities

• Experience with 3D data and RVIZ

• Experience with Point Cloud Library tools*
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Industrial Calibration

• Perform intrinsic and extrinsic calibration

• Continuously improving library

• Resources, library 

– Github link

– Wiki link

• Resources, tutorials

– Github industrial calibration tutorials link
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https://github.com/ros-industrial/industrial_calibration
http://wiki.ros.org/industrial_extrinsic_cal
https://github.com/ros-industrial/industrial_calibration_tutorials


Industrial (Intrinsic) Calibration

• The INTRINSIC Calibration 
procedure requires 
movement of the camera to 
known positions along an 
axis that is approximately 
normal to the calibration 
target.

• Using the resulting intrinsic 
calibration parameters for a 
given camera yields 
significantly better extrinsic 
calibration or pose 
estimation accuracy.
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Industrial (Extrinsic) Calibration
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https://www.youtube.com/watch?v=MJFtEr_Y4ak

https://www.youtube.com/watch?v=MJFtEr_Y4ak


3D Cameras

• RGBD cameras, TOF 
cameras, stereo vision, 3D 
laser scanner

• Driver for Asus Xtion camera 
and the Kinect (1.0) is in the 
package openni2_launch

• Driver for Kinect 2.0 is in 
package iai_kinect2 (github 
link)

• https://rosindustrial.org/3d-
camera-survey
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https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
https://rosindustrial.org/3d-camera-survey
https://rosindustrial.org/3d-camera-survey


3D Cameras

• Produce (colored) point cloud data

• Huge data volume

– Over 300,000 points per cloud

– 30 Hz frame rate
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Perception Processing Pipeline

• Goal: Gain knowledge from sensor 
data

• Process data in order to
– Improve data quality  filter noise 
– Enhance succeeding processing steps 
 reduce amount of data

– Create a consistent environment 
model  Combine data from different 
view points

– Simplify detection problem 
segment interesting regions

– Gain knowledge about environment 
classify surfaces

26

Camera

Processing

Robot 
Capabilities



Perception Tools

• Overview of OpenCV

• Overview of PCL

• PCL and OpenCV in ROS

• Other libraries 

• Focus on PCL tools for 
exercise
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Perception Libraries (OpenCV)

• Open Computer Vision Library (OpenCv) - 
http://opencv.org/

– Focused on 2D images

– 2D Image processing

– Video

– Sensor calibration

– 2D features

– GUI

– GPU acceleration

28

http://opencv.org

http://opencv.org/


OpenCV tutorial

• Perform image processing to determine pump 
orientation (roll angle)

• Github tutorial link

• Training Wiki link
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https://github.com/ros-industrial/industrial_pcl
http://aeswiki.datasys.swri.edu/rositraining/indigo/Exercises/2A.2


Perception Libraries (OpenCV)

• Open CV 3.2

– Has more 3D tools

• LineMod
– https://www.youtube.com/watch?v=vsThfxzIUjs

• PPF

– Has opencv_contrib

• Community contributed code

• Some tutorials
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http://docs.opencv.org/ref/master/d5/d08/namespacecv_1_1linemod.html
https://www.youtube.com/watch?v=vsThfxzIUjs
http://docs.opencv.org/ref/master/d0/de6/namespacecv_1_1ppf__match__3d.html
https://github.com/opencv/opencv_contrib


Perception Libraries (PCL)

• Point Cloud Library (PCL) - 
http://pointclouds.org/

– Focused on 3D Range(Colorized) data
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http://pointclouds.org

http://pointclouds.org/


Perception Libraries (PCL)

• PCL Command Line Tools
– sudo apt install pcl-tools

– Tools (140+)
• pcl_viewer

• pcl_point_cloud_editor

• pcl_voxel_grid

• pcl_sac_segmentation_plane

• pcl_cluster_extraction

• pcl_passthrough_filter

• pcl_marching_cubes_reconstruction

• pcl_normal_estimation

• pcl_outlier_removal
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ROS Bridges

• OpenCV & PCL are external libraries

• “Bridges” are created to adapt the 
libraries to the ROS architecture

–OpenCV: http://ros.org/wiki/vision_opencv

–PCL: http://ros.org/wiki/pcl_ros

• Standard Nodes (PCL Filters): 
http://ros.org/wiki/pcl_ros#ROS_nodelets
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http://ros.org/wiki/vision_opencv
http://ros.org/wiki/pcl_ros
http://ros.org/wiki/pcl_ros#ROS_nodelets


Many More Libraries

• Many more libraries in the ROS Ecosystem

– AR Tracker 
http://www.ros.org/wiki/ar_track_alvar

– Robot Self Filter 
http://www.ros.org/wiki/robot_self_filter
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http://www.ros.org/wiki/ar_track_alvar
http://www.ros.org/wiki/robot_self_filter


Exercise 4.1

• Play with PointCloud data 

– Play a point cloud file to simulate data coming from a 
Asus 3D sensor.

– Matches scene for demo_manipulation

– 3D Data in ROS 2

– Use PCL Command Line Tools

• https://industrial-training-
master.readthedocs.io/en/humble/_source/sessi
on4/ros2/2-Introduction-to-Perception.html
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https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html
https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html
https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html


Review/Q&A

Session 3
ROS-Industrial

• Architecture

• Capabilities

Motion Planning

• Examine MoveIt Planning 
Environment

• Setup New Robot

• Motion Planning (Rviz)

• Motion Planning (C++)

Session 4
Moveit! Planning 

Intro to Planners

Perception
• Calibration
• PointCloud File
• OpenCV
• PCL
• PCL Command Line Tools
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