
ROS-Industrial Basic Developer’s
Training Class

Southwest Research Institute

1

July 2023

Session 4:
Motion Planning

Moveit! Planning using C++
Intro to Planners

Intro to Perception

Southwest Research Institute

2

Motion Planning in C++

MoveIt! provides a high-level C++ API:
moveit_cpp

3

#include <moveit/moveit_cpp/moveit_cpp.h>

...

moveit_cpp::MoveItCpp::Ptr moveItCpp = make_shared(node);

moveit_cpp::PlanningComponent::Ptr planner = make_shared(“arm", moveItCpp);

planner->setGoal(“home”);

planner->plan();

planner->execute();

5 lines = collision-aware path planning & execution

Amazing!

Reminder: MoveIt! Complexity

4

Sensor Input

http://moveit.ros.org/wiki/High-level_Overview_Diagram
http://moveit.ros.org/wiki/Pipeline_Overview_Diagram

Main difference
between MoveGroup
and MoveItCpp is the
layer of abstraction

http://moveit.ros.org/wiki/High-level_Overview_Diagram
http://moveit.ros.org/wiki/Pipeline_Overview_Diagram

Motion Planning in C++

Pre-defined position:

5

planner.setGoal(“home”);

Joint position:
robot_state::RobotState joints.setStateValues(names, positions);

planner.setGoal(joints);

Cartesian position:
Affine3d pose = {x, y, z, r, p, y};

planner.setGoal(pose);

Exercise 4.0

7

Exercise 4.0:
Motion Planning using C++

fake_ar_pub

vision_node

myworkcell_moveit_cfg

ur5_driver

descartes_node

myworkcell_support

myworkcell_node

Param: base_frame

Intro to Planners

• Types of Motion Plans

• Basic Toolpath Plan

• Planning Workflows

• Common Motion Planners

–OMPL

–Descartes

–TrajOpt

• Motion Planning Frameworks

• Simple Planning Pipelines

• Advanced Planning Pipelines
8

Types of Motion Plans

9

Freespace Process Combined

Motion plans between far-
spaced start and end
points

Motion plans optimize
robot pose between
under-constrained
waypoints

Motion plans that can be
segmented into portions
that are freespace motions
and others that are process
motions

Example: Moving from a
generic, off-the-surface
"start pose" to the upper
righthand corner of a
surface for painting

Example: A continuous line
mapped around the edge
of a piece to be welded

Example: Moving from a
generic, off-the-surface
"start pose" to the edge of
a jig-held part and then
welding the edge at a
known EE angle

Toolpath Plan Example

10

PART

Raster - A series of
specified Cartesian
waypoints to be
executed without
breaking*
Transition - A
freespace move
between rasters

Entry/Exit - A freespace
move from/to a position
away from the part

Definitions

*depends on
application

Common Motion Planners

11

Motion Planner Application Space Notes

OMPL Free-space Planning Stochastic sampling; Easy and convenient
interface

TrajOpt Trajectory Optimization Optimize existing trajectory on constraints
(distance from collision, joint limits, etc.)

Descartes Cartesian path planning Globally optimum; sampling-based search;
Captures “tolerances”

Simple Planner Free-space Planning Naive simple linear interpolation between
waypoints

STOMP Free-space Planning Optimization-based; Emphasizes smooth
paths

CHOMP Trajectory Optimization Gradient-based trajectory optimization for
collision avoidance and cost-reduction

OMPL

Open Motion Planning Library:
Randomly Sample Valid Joint States then

Solve for Sequence
Planners we often use:
• RRT

– Build a tree along different potential joint
configurations to arrive at the final pose

• RRT-Connect
– Build a tree from each side and try to connect

them
– Parameters

• Range (same as above)

• See more at
https://ompl.kavrakilab.org/planners.htm
l

Starting Joint
Configuration

Final Joint
Configuration

Unideal Sample
Joint Configuration

12

https://ompl.kavrakilab.org/planners.html
https://ompl.kavrakilab.org/planners.html

Descartes

Sample ‘all’ Possible Solutions then Graph Search for
Best Trajectory

13

TrajOpt

Optimize Seed Trajectory based on Weighted
Cost Functions (distance from collision, joint
limits, etc.)

• All parameters have a coefficient that can
be increased/decreased to change its
influence

• Example costs:
– Proximity to a singularity

– Velocity/Acceleration/Jerk smoothing

– Avoid collisions

• Weighed sums of all collision terms

• Safety margin-based cost

– Encourage/discourage DOF usage

• Cartesian: rotation about z encouraged &
unconstrained

• Joint: usage of the wrist discouraged with a high
cost

• Constraints are simply infinite costs
– The absolute limit of the safety margin would

be set and anything in collision with it would
cause the planner to fail

14

Motion Planning Environments
Interfaces used to generate motion plans can be:

• Open Source or License-based

• UI or script based

• Leverage a variety of planners

• Contain additional hooks to simulation packages

These differ from raw planners with:

• ROS API

• Collision environment management

• Visualization packages

• Planning pipeline/Task Constructor capabilities

15

MoveIt!/MoveIt!2 Tesseract

Easy to use interface, wizard features, broad toolset Enables very complex planning, different toolset

INTRODUCTION TO PERCEPTION

18

Outline

• Camera Calibration

• 3D Data Introduction

• Explanation of the Perception Tools
Available in ROS

• Intro to PCL tools
– Exercise 4.1

19

Objectives

• Understanding of the calibration capabilities

• Experience with 3D data and RVIZ

• Experience with Point Cloud Library tools*

20

Industrial Calibration

• Perform intrinsic and extrinsic calibration

• Continuously improving library

• Resources, library

– Github link

– Wiki link

• Resources, tutorials

– Github industrial calibration tutorials link

21

https://github.com/ros-industrial/industrial_calibration
http://wiki.ros.org/industrial_extrinsic_cal
https://github.com/ros-industrial/industrial_calibration_tutorials

Industrial (Intrinsic) Calibration

• The INTRINSIC Calibration
procedure requires
movement of the camera to
known positions along an
axis that is approximately
normal to the calibration
target.

• Using the resulting intrinsic
calibration parameters for a
given camera yields
significantly better extrinsic
calibration or pose
estimation accuracy.

22

Industrial (Extrinsic) Calibration

23

https://www.youtube.com/watch?v=MJFtEr_Y4ak

https://www.youtube.com/watch?v=MJFtEr_Y4ak

3D Cameras

• RGBD cameras, TOF
cameras, stereo vision, 3D
laser scanner

• Driver for Asus Xtion camera
and the Kinect (1.0) is in the
package openni2_launch

• Driver for Kinect 2.0 is in
package iai_kinect2 (github
link)

• https://rosindustrial.org/3d-
camera-survey

24

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
https://rosindustrial.org/3d-camera-survey
https://rosindustrial.org/3d-camera-survey

3D Cameras

• Produce (colored) point cloud data

• Huge data volume

– Over 300,000 points per cloud

– 30 Hz frame rate

25

Perception Processing Pipeline

• Goal: Gain knowledge from sensor
data

• Process data in order to
– Improve data quality filter noise
– Enhance succeeding processing steps
 reduce amount of data

– Create a consistent environment
model Combine data from different
view points

– Simplify detection problem
segment interesting regions

– Gain knowledge about environment
classify surfaces

26

Camera

Processing

Robot
Capabilities

Perception Tools

• Overview of OpenCV

• Overview of PCL

• PCL and OpenCV in ROS

• Other libraries

• Focus on PCL tools for
exercise

27

Perception Libraries (OpenCV)

• Open Computer Vision Library (OpenCv) -
http://opencv.org/

– Focused on 2D images

– 2D Image processing

– Video

– Sensor calibration

– 2D features

– GUI

– GPU acceleration

28

http://opencv.org

http://opencv.org/

OpenCV tutorial

• Perform image processing to determine pump
orientation (roll angle)

• Github tutorial link

• Training Wiki link

29

https://github.com/ros-industrial/industrial_pcl
http://aeswiki.datasys.swri.edu/rositraining/indigo/Exercises/2A.2

Perception Libraries (OpenCV)

• Open CV 3.2

– Has more 3D tools

• LineMod
– https://www.youtube.com/watch?v=vsThfxzIUjs

• PPF

– Has opencv_contrib

• Community contributed code

• Some tutorials

30

http://docs.opencv.org/ref/master/d5/d08/namespacecv_1_1linemod.html
https://www.youtube.com/watch?v=vsThfxzIUjs
http://docs.opencv.org/ref/master/d0/de6/namespacecv_1_1ppf__match__3d.html
https://github.com/opencv/opencv_contrib

Perception Libraries (PCL)

• Point Cloud Library (PCL) -
http://pointclouds.org/

– Focused on 3D Range(Colorized) data

31

http://pointclouds.org

http://pointclouds.org/

Perception Libraries (PCL)

• PCL Command Line Tools
– sudo apt install pcl-tools

– Tools (140+)
• pcl_viewer

• pcl_point_cloud_editor

• pcl_voxel_grid

• pcl_sac_segmentation_plane

• pcl_cluster_extraction

• pcl_passthrough_filter

• pcl_marching_cubes_reconstruction

• pcl_normal_estimation

• pcl_outlier_removal

32

ROS Bridges

• OpenCV & PCL are external libraries

• “Bridges” are created to adapt the
libraries to the ROS architecture

–OpenCV: http://ros.org/wiki/vision_opencv

–PCL: http://ros.org/wiki/pcl_ros

• Standard Nodes (PCL Filters):
http://ros.org/wiki/pcl_ros#ROS_nodelets

33

http://ros.org/wiki/vision_opencv
http://ros.org/wiki/pcl_ros
http://ros.org/wiki/pcl_ros#ROS_nodelets

Many More Libraries

• Many more libraries in the ROS Ecosystem

– AR Tracker
http://www.ros.org/wiki/ar_track_alvar

– Robot Self Filter
http://www.ros.org/wiki/robot_self_filter

34

http://www.ros.org/wiki/ar_track_alvar
http://www.ros.org/wiki/robot_self_filter

Exercise 4.1

• Play with PointCloud data

– Play a point cloud file to simulate data coming from a
Asus 3D sensor.

– Matches scene for demo_manipulation

– 3D Data in ROS 2

– Use PCL Command Line Tools

• https://industrial-training-
master.readthedocs.io/en/humble/_source/sessi
on4/ros2/2-Introduction-to-Perception.html

35

https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html
https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html
https://industrial-training-master.readthedocs.io/en/humble/_source/session4/ros2/2-Introduction-to-Perception.html

Review/Q&A

Session 3
ROS-Industrial

• Architecture

• Capabilities

Motion Planning

• Examine MoveIt Planning
Environment

• Setup New Robot

• Motion Planning (Rviz)

• Motion Planning (C++)

Session 4
Moveit! Planning

Intro to Planners

Perception
• Calibration
• PointCloud File
• OpenCV
• PCL
• PCL Command Line Tools

36

	Slide 1: ROS-Industrial Basic Developer’s Training Class
	Slide 2: Session 4: Motion Planning Moveit! Planning using C++ Intro to Planners Intro to Perception
	Slide 3: Motion Planning in C++
	Slide 4: Reminder: MoveIt! Complexity
	Slide 5: Motion Planning in C++
	Slide 7: Exercise 4.0
	Slide 8: Intro to Planners
	Slide 9: Types of Motion Plans
	Slide 10: Toolpath Plan Example
	Slide 11: Common Motion Planners
	Slide 12: OMPL
	Slide 13: Descartes
	Slide 14: TrajOpt
	Slide 15: Motion Planning Environments
	Slide 18: Introduction to Perception
	Slide 19: Outline
	Slide 20: Objectives
	Slide 21: Industrial Calibration
	Slide 22: Industrial (Intrinsic) Calibration
	Slide 23: Industrial (Extrinsic) Calibration
	Slide 24: 3D Cameras
	Slide 25: 3D Cameras
	Slide 26: Perception Processing Pipeline
	Slide 27: Perception Tools
	Slide 28: Perception Libraries (OpenCV)
	Slide 29: OpenCV tutorial
	Slide 30: Perception Libraries (OpenCV)
	Slide 31: Perception Libraries (PCL)
	Slide 32: Perception Libraries (PCL)
	Slide 33: ROS Bridges
	Slide 34: Many More Libraries
	Slide 35: Exercise 4.1
	Slide 36: Review/Q&A

